Semester 1
Course ID | Course Name | Credit |
CII613 | Modelling and Optimization | 3 |
CII623 | Research Methodology | 3 |
CII622 | Project | 2 |
CII6A3 | Introduction to Social Computing | 3 |
CII6B3 | Introduction to Media Informatics | |
CII6C3 | Introduction to IoT | |
CII6D3 | Introduction to Cyber Security | |
CII643 | Algorithm Analysis | 3 |
Semester 2
Course ID | Course Name | Credit |
CII653 | Implementatation Project-I | 3 |
CII663 | Advanced Intelligent System | 3 |
CII6E3 | Advanced Social Computing Elective: Semantic Web | 3 |
CII6F3 | Advanced Social Computing Elective: Big Data Analytics | |
CII6G3 | Advanced Media Informatic Elective: Multimedia System and Standard | |
CII6H3 | Advanced IoT Elective: Advandced Internet of Things | |
CII6I3 | Advanced Cyber Scecurity Elective: Advanced Kriptografi | |
CII6J3 | Advanced Social Computing Elective: Science of Online Network | 3 |
CII6K3 | Advanced Media Informatic Elective: Advanced Pattern Recognition | |
CII6L3 | Advanced IoT Elective: Advanced Network Security | |
CII6M3 | Advanced Cyber Scecurity Elective: Forensik Digital |
Semester 3
Course ID | Course Name | Credit |
CII713 | Implementation Project-II | 3 |
CII723 | Digital Business | 2 |
CII7 3 | Social Computing Elective Course 1 | 3 |
CII7 3 | Media Informatics Elective Course 1 | |
CII7 3 | IoT Elective Course 1 | |
CII7 3 | Cyber Security Elective Course 1 | |
CII7 3 | Social Computing Elective Course 2 | 3 |
CII7 3 | Media Informatics Elective Course 2 | |
CII7 3 | IoT Elective Course 2 | |
CII7 3 | Cyber Security Elective Course 2 |
Semester 4
Course ID | Course Name | Credit |
CII713 | Thesis | 3 |
DESKRIPSI MATA KULIAH
DESKRIPSI SINGKAT MATA KULIAH
1 Common Course
CSH513 Modelling & Optimization
Mata Kuliah ini akan dibahas tentang Pengertian, tujuan dan manfaat model. Jenis dan bentuk model. Asumsi, formulasi, validasi dan feedback; Model linear, metode least square, aturan Cramer, linearisasi; Model Nonlinear dan Linearisasi. Model Logistik; Model klasifikasi linear, persamaan hyperplane, margin, dimensi Vapnic-Cervonenkis. Masalah optimasi quadratic; Lagrange Multiplier, Dual Problem, Fungsi Affine; Pengertian vektor gradient, gradient descent untuk peminimuman, gradient ascent untuk pemaksimuman, implementasi; Model deterministik vs probabilistik, Model Markov dan antrian, performansi system.
Modelling and Optimization discusses definition, purpose and benefits of the model. The type and form of the model. Assumptions, formulation, validation and feedback; The linear model, the least squares method, Cramer’s rule, linearization; Nonlinear Model and linearization. Logistic Model; Linear classification model, hyperplane equation, margin, dimensions Vapnic-Cervonenkis. Quadratic optimization problem; Lagrange Multiplier, Dual Problem, Affine Function; Definition of gradient vector, gradient descent to peminimuman, gradient ascent to maximization, implementation; Probabilistic vs. deterministic models, Markov models and queues, system performance.
MTH503 Research Methodology
Membahas tentang beberapa metodologi penelitian dalam bidang Informatika berikut perangkat atau tools yang dapat digunakan dalam penelitian (seperti perangkat untuk survey, perangkat statistika, perangkat pemodelan umum, dll), kriteria pengujian hasil penelitian di bidang Informatika, cara untuk mengevaluasi rancangan percobaan/pengujian pada penelitian, serta cara membaca, memeriksa/mengevaluasi, memaparkan, menulis, merancang, dll makalah di bidang Informatika
Research Methodology discusses some research methodologies in the field of Informatics including mehtods or tools that can be used in research (such as a tools for survey, the statistical tools, the general modeling tools, etc.). Additionally, it will be discussed criteria for testing the results of research in the field of Informatics, a way to evaluate the experimental design/testing on research, as well as how to read, check/evaluate, explain, writing, designing papers in the field of Informatics
CSH573 Advanced Intelligent System
Justifikasi formal untuk permasalahan dan solusi, analisis dan pemodelan; alternatif lain distributed AI. Materi mata kuliah akan meliputi : Introduction, intelligent agent, Blind Search : Breadth First Search, Depth First Search, Uniform Cost Search; Informed Search : Best First search, A*, minimax, MST Algorithm, Simulated annealing; Local Search Algorithm and Optimization Problem; Knowledge, Reasoning and Planning; Uncertain Knowledge and Reasoning; Learning : ANN dan HMM
Advanced Intelligent System discusses formal justification for problems and solution, analysis and modelling; also disussing distributed AI. This course covers : Introduction, intelligent agent, Blind Search : Breadth First Search, Depth First Search, Uniform Cost Search; Informed Search : Best First search, A*, minimax, MST Algorithm, Simulated annealing; Local Search Algorithm and Optimization Problem; Knowledge, Reasoning and Planning; Uncertain Knowledge and Reasoning; Learning : ANN and HMM
CSH533 Algorithm Analysis
Pembahasan sampai pada kelas problem P-NP. Penekanan pada analisis metematis. Perlu dibahas pula tentang metode optimasi deterministik. Mata kuliah ini meliputi : dasar-dasar komputasi, batas bawah komputasi, struktur data, teknik desain dan analisa lanjut, teori graph, limit komputasi dan beberapa case problem.
Algorithm Analysis includes discussion about P-NP problem. This course emphasize mathematical analysis. This courses also discusses deterministic optimization methods. This course covers: the basics of computing, the lower limit of computing, data structures, engineering design and advanced analysis, graph theory, computational limits and case problems.
CSH522 Project
Berisi pembahasan tentang pembuatan proposal thesis meliputi problem identification, literature review, penyusunan hipothesa, Experiment Scenario Design, schedule.
Project guidesthe making of thesis proposal covering problem identification, literature review, hipothesis, experiment scenario design, and thesis scheduling.
CSH563 Prethesis I
Berisi pembahasan tentang impelentasi proposal thesis yang telah diseminarkan dan disetujui oleh penguji seminar proposal. Cakupan yang harus dicapai dalam prathesis adalah Problem Identification, Detail Literature Review, Detail Design, Perancangan Skenario Pengujian, dan Impelentasi Sistem tahap awal.
Pre-Thesis I contains a discussion of the implementation of the thesis proposal that has been presented and approved by the examiner of thesis proposal (in Project). Coverage should be achieved in Pre-Thesis 1 is problem identification, detailed literature review, detailed design, design of testing scenario, and early system implementation.
CSH613 Prethesis II
Berisi pembahasan tentang Implementasi Sistem, pengujian sistem serta melakukan analisa terhadap hasil pengujian.
Pre-Thesis II contains a discussion of system implementation, system testing and analyzing the thesis results.
CSH623 Thesis
Melanjutkan proses prethesis, meliputi pembahasan tentang Pengujian sistem dan Penulisan Buku laporan thesis berbahasa Inggris serta jurnal publikasi penelitian thesis.
Thesis continues the process of Pre-Thesis including discussions of system testing and thesis writing in English as well as peer-reviewed publications of thesis.
MTH502 Business Management
Membahas tentang cara mengelola sebah proyek, mengeenali aturan pemerina yang terkait dengan IT, pemasaran serta psikolgi yang berkaitan dengan SDM yang akan dikelolanya.
Business Management discusses how to manage a project, the government rules related to IT, marketing and psychology related to human resources that will be managed.
CSH583 Statistics and Data Analytics
Membahas tentang Descriptive statistics, Inferential statistics, Test hipotesis, Konsep dasar analisis regresi.
Descriptive statistics, Inferential statistics, Hypothesis testing, The basic concept of regression analysis
2 Media Informatics Basic Courses
CSH5B3 Advanced Networking
Advanced Networking memperdalam pemahaman mahasiswa tentang protokol-protokol di lapisan Network, Transport dan Aplikasi dari OSI-model. Konsep dan perkembangan terbaru dari protokol-protokol tersebut menjadi topik utama bahasan. Disamping itu, praktek troubleshooting protokol-protokol tersebut menggunakan wireshark dan network simulator juga menjadi perhatian.
Advanced Networking deepen students’ understanding of the protocols at the Network, the Transport and Application layers of OSI-model. The concept and the latest development of the protocols has become a major topic of discussion. In addition, the practice troubleshooting those protocols using wireshark and network simulator is also a concern.
CSH5A3 Multimedia System & Standard
Membahas materi yang berkaitan dengan sistem multimedia dan beberapa standar format data. Selain itu juga akan dibahas tentang pengenalan terhadap sejumlah media utama (suara, gambar, video) berikut standar format penyimpanan dan pendistribusian datanya, perangkat dan cara untuk akuisisi dan digitasi data, pengolahan, penyimpanan, penyebaran, penyampaian, serta penanganan terhadap kerusakan.
Materials discussed related to multimedia systems and some of standard data formats. Additionally, it will be discussed about the introduction of a number of major media (voice, images, video) follows the standard format of data storage and distribution, device and method for acquisition and digitization of data, processing, storage, distribution, delivery, and handling of damage.
CSH543 Information Theory
Pendalaman secara teoritis tentang ultimate limit data compression, menentukan limit dari reliable communication pada noisy channel; konversi kode pada teks, audio, video; channel coding.
Deepening of the theoretical about ultimate of limit data compression, determines the limit of reliable communication in noisy channel; conversion codes in text, audio, video; channel coding.
3 Socio Computing Basic Courses
CSH553 Social Computing
Pada mata kuliah ini dibahas pengetahuan tentang: Pengetahuan tentang ruang lingkup social computing, Pengetahuan tentang multi agent systems, Pengetahuan tentang social choice, Pengetahuan tentang crowdsourcing, Pengetahuan tentang social network, Pengetahuan tentang human in social systems, Pengetahuan tentang data analytics,
Pengetahuan tentang impacts dari social computing.
Knowledge of the scope of social computing, Knowledge of multi-agent systems, Knowledge of social choice, Knowledge of crowdsourcing, Knowledge of the social network, Knowledge of human in social systems, Knowledge of data analytics, Knowledge of the impact of social computing.
CSH5E3 Network Science
Materi untuk menampilkan sistem yang kompleks ke dalam jaringan statis atau dinamis yang terdiri dari banyak komponen yang saling berinteraksi. Network Science adalah disiplin yang muncul yang menyelidiki struktur jaringan yang kompleks seperti dalam hal metode penyebarannya dalam jaringan, apa proses dinamis dalam dan bagaimana dan pengaruh ke dua yang disebutkan pada sistem. Aplikasi dari ilmu jaringan mencakup berbagai bidang seperti informatika, biologi, fisika, kognitif, dan sistem sosial.
Study of representing the complex systems into static or dynamic networks which consist of many interacting components. Network science is an emerging discipline that investigates the structure of such complex networks in terms of its propagation method within the network, what are the dynamic process inside and how the two of them affecting the systems.
The applications of network science include many fields such as informatics, biology, physics, cognitive, and social systems.
Infromation Retrieval
Pada matakuliah ini akan dibahas tentang pengenalan information organization and retrieval, IR Teknologi : model of IR Technology, Classification, web search, ranking, entity search, Keyword Search Over Relational Databases; Concept and Usage of Semantic Data Model For Conceptual Modelling of Information.
This course discusses the introduction of information organization and retrieval. Information Retrieval (IR) technology: a model of IR technology, classification, web search, ranking, search entity, keyword search over relational databases; concept and usage of semantic data model for conceptual modelling of information.
4 Socio Computing: Semantic Web Research Area
Collaborative Systems Pengetahuan tentang jenis-jenis sistem kolaboratif, Kolaborasi asinkron pada system, Pengetahuan tentang sistem kolaboratif sinkron, Pengetahuan tentang sistem kolaboratif asinkron, Pengetahuan tentang masa depan sistem kolaboratif.
Knowledge of the types of collaborative systems, Asynchronous collaboration system, Knowledge of synchronous collaborative systems, Knowledge of asynchronous collaborative systems, Knowledge about the future of collaborative systems.
Adaptive-collaborative learning
Pengetahuan tentang intelligence, adaptation, and personalisation in learning systems, Pengetahuan tentang arsitektur adaptive-personalised learning, Pengetahuan tentang pengetahuan tentang user profiling and modeling, Pengetahuan tentang Bayesian network based-adaptation, Pengetahuan tentang group formation, Pengetahuan tentang computer-supported collaborative learning, Pengetahuan tentang group-based adaptive learning systems.
Knowledge of intelligence, adaptation, and personalization in learning systems, Knowledge of architecture of adaptive-personalized learning, Knowledge of the knowledge of the user profiling and modeling, Knowledge of Bayesian network based-adaptation, Knowledge of group formation, Knowledge of computer-supported collaborative learning, Knowledge of group-based adaptive learning systems.
CSH5C3 Semantic web technology
Pengetahuan tentang konsep semantic web, Pengetahuan tentang RDF, RDFS, OWL, Pengetahuan tentang ontology engineering, Pengetahuan tentang ontology patterns, Pengetahuan tentang query ontology dan SPARQL, Pengetahuan tentang semantic web publishing, Pengetahuan tentang semantic web rules, Pengetahuan tentang vocabularies and applications, Pengetahuan tentang methods for evaluating ontologies, Pengetahuan tentang common problems in ontology development Knowledge of the concept of the semantic web, Knowledge of the RDF, RDFS, OWL, Knowledge of ontology engineering, Knowledge of ontology patterns, Knowledge of ontology and SPARQL query, Knowledge of the semantic web publishing, Knowledge of the semantic web rules, Knowledge of vocabularies and applications, Knowledge of methods for evaluating ontologies, Knowledge of common problems in ontology development.
The science of Social Network
Pengetahuan tentang history of Social Networking Technologies and the Web, Pengetahuan tentang online social networks and business, Pengetahuan tentang digital Literacy and Web 2.0 systems, Pengetahuan tentang graph theory and social networks, Pengetahuan tentang network dynamics, Pengetahuan tentang security, privacy, trust, and identity in online social networks.
Knowledge of the history of Social Networking Technologies and the Web, Knowledge of online social networks and business, Knowledge of the digital literacy and Web 2.0 systems, Knowledge of graph theory and social networks, Knowledge of network dynamics, Knowledge of security, privacy, trust, and identity in online social networks.
Logic and reasoning in the Semantic Web
Pengetahuan tentang FOL (First Order Logic), Pengetahuan tentang modal Logic, Pengetahuan tentang description Logic, Pengetahuan tentang reasoning, Pengetahuan tentang DL Reasoning.
Knowledge of FOL (First Order Logic), Knowledge of the modal Logic, Knowledge of description Logic, Knowledge of reasoning, Knowledge of DL reasoning.
5 Socio Computing:Data Science Research Area
CSH5D3 Big Data Analytics
Pengetahuan tentang Data exploration, Pengerahuan tentang Data collection, sampling and preprocessing, Pengetahuan tentang Data representation and handling , Pengetahuan tentang Data modeling, Pengetahuan tentang Optimization, data visualization, hypothesis testing, Pengetahuan tentang Predictive and descriptive analysis, Pengetahuan tentang Analytics: backtesting analytical models, benchmarking.
Knowledge of data exploration, Knowledge of data collection, sampling and preprocessing, Knowledge of data representation and handling, Knowledge of data modeling, Knowledge of optimization, data visualization, hypothesis testing, Knowledge of predictive and descriptive analysis, Knowledge of analytics: backtesting analytical models, benchmarking.
CSH583 Statistical Big Data Mining
Pengetahuan tentang Statistical methods in Data Mining: overview, Pengetahuan tentang Data size characteristics, Pengetahuan tentang Variable assessment: correlation coefficient, scatterplots, Pengetahuan tentang Symmetrizing ranked data – improving the predictive power of data, Pengetahuan tentang PCA – method for many variable assessment, Pengetahuan tentang Linear Methods for Regression, Pengetahuan tentang Linear Methods for Classification, Pengetahuan tentang Model Assessment and Selection, Pengetahuan tentang Model Inference and Averaging.
Knowledge of statistical methods in Data Mining: overview, Knowledge of data size characteristics, Knowledge of variable assessment: correlation coefficient, scatterplots, Knowledge of symmetrizing ranked data – improving the predictive power of the data, Knowledge of the PCA – method for many variables assessment, Knowledge of linear methods for regression, Knowledge of linear methods for classification, Knowledge of model assessment and selection, Knowledge of model inference and averaging.
Intelligent Big Data Mining
Pengetahuan tentang Vision on Intelligent Big Data Mining, Pengetahuan tentang Business Discovery, Pengetahuan tentang tentang Creating a Foundation of Data, Pengetahuan tentang Machine Learning-based Data Mining, Pengetahuan tentang Visualisation, Pengetahuan tentang Governance: funding intelligence, protecting the results, Pengetahuan tentang Sustaining Delivery of Actionable Intelligence
Knowledge of vision on Intelligent Big Data Mining, Knowledge of business discovery, Knowledge of creating a foundation of data, Knowledge of machine learning-based data mining, Knowledge of visualization, Knowledge of governance: intelligence funding, protecting the results, Knowledge of sustaining delivery of actionable intelligence
Text Mining and Analytics
Pengertahuan tentang Overview of text mining and analytics, Pengetahuan tentang Natural language processing and text representation, Pengetahuan tentang Word association mining, Pengetahuan tentang Topic mining and analysis with statistical topic models, Pengetahuan tentang Text clustering and categorization, Pengetahuan tentang Opinion mining and sentiment analysis, Pengetahuan tentang Integrative analysis of text and structured data.
Knowledge of overview of text mining and analytics, Knowledge of natural language processing and text representation, Knowledge of word association mining, Knowledge of topic mining and analysis with statistical topic models, Knowledge of text clustering and categorization, Knowledge of opinion mining and sentiment analysis, Knowledge of integrative analysis of text and structured data.
6 Media Informatics Elective Courses : Security Research Area
Advanced Cryptography Probabilitas dan Kerahasiaan yang sempurna : overview tentang distribusi probabilitas, probabilitas kondisional, dan teori bayes. Sejarah Paradox. Kerahasiaan yang sempurna / keamanan pada semua kondisi, Teorema Shannon pada kriptografi tanpa syarat aman dan pembuktiannya; kriptografi yang terbukti aman, Generation primer dan Pengujian Primality, Cryptanalisis dari faktor Berbasis kriptografi, Discrete Log Berbasis Kriptografi dan Cryptanalisis, Elliptic Curve Cryptography dan Cryptanalisis, dan tambahan Topik lain.
Probability and Perfect Secrecy : Overview of probability distributions, conditional probability, and Bayes’ Theorem. The Birthday Paradox. Perfect Secrecy/unconditional security, Shannon’s Theorem on unconditionally secure cryptosystems and its proof; Provably secure cryptosystems,Prime Generation and Primality Testing, Cryptanalysis of Factoring-Based Cryptosystems, Discrete Log Based Cryptography and Cryptanalysis, Elliptic Curve Cryptography and Cryptanalysis, Additional Topics.
Information Hiding For Text, Image and Video
Pengantar penyembunian Informasi dalam Teks, Gambar dan Video, Penyembunian Informasi Teks: Penyembunian Data Text untuk dokumen digital dan cetak, metode semantik, Text Innocuous, fungsi meniru. Penyembunian Informasi dalam gambar: Penyembunyian Data di gambar mentah (BMP) : representasi warna (RGB, YUV, HSV, transformasi), LSB (bit paling signifikan) embedding, penyerangan LSB embedding (Contoh Pasangan Analisis), sensor pencitraan, pemrosesan sinyal di digital kamera, penyembunyian data dengan meniru perangkat suara (Stochastic Modulation); Penyembunyian Data di Gambar palet (GIF) : format palet (GIF), Penyembunyian dengan mengurangi kedalaman warna, GIFshuffle, algoritma EzStego-seperti, optimal palet paritas tugas, serangan dalam algoritma EzStego (Pasangan Analisis); Penyembunyian Data di H264 Encoded Sequenced Video, Teknik Penyembunyian Data Video.
Introduction to Information Hiding in Text, Image and Video, Information Hiding in Text : Text data hiding for digital and printed document, semantic methods, Innocuous Text, mimic function. Information hiding in image : Data hiding in raw (BMP) images : color representation (RGB, YUV, HSV, transformations), LSB (least significant bit) embedding, attacking LSB embedding (Sample Pairs Analysis), imaging sensors, signal processing in digital cameras, data hiding by mimicking device noise (Stochastic Modulation); Data hiding in palette (GIF) images : palette formats (GIF), hiding by decreasing color depth, GIFshuffle, EzStego-like algorithms, optimal palette parity assignment, attack on EzStego-like algorithms (Pairs Analysis); Data hiding in H264 Encoded Sequenced Video, Techniques for Video Data Hiding.
Information Hiding For Audio and Web Content.
Pengantar Penyembunyian Audio dan Informasi Web, Teknik dalam Penyembunyian Data Audio: Parity coding, Phase Coding, Spread Spektrum, Echo Hiding. Pengenalan Penyembunyian Web Content data, konten web teknik Penyembunyian data.
Introduction to Audio and Web Information Hiding, Techniques in Audio Data Hiding: Parity coding, Phase Coding, Spread Spektrum, Echo Hiding. Introduction to Web Content data hiding, web content data hiding techniques.
Information Security System
Metode/praktik pengelolaan keamanan, sistem kendali akses, keamanan telekomunikasi dan jaringan, kriptografi, arsitektur dan model keamanan, keamanan operasional, aspek keamanan dalam pengembangan aplikasi dan sistem, rencana keberlanjutan bisnis dan pemulihan dari kerusakan, aspek hukum dan etika, dan pengamanan secara fisik.
Methods and practice of security management, access control systems, security of telecommunications and networking, cryptography, architecture and security model, operational security, the security aspects in the development of applications and systems, plan business continuity and recovery of damages, legal and ethical aspects, and securing physical.
Cryptanalysis
Trial Division. Power Testing.Smooth Number dan review tentang metode Pollard p-1 faktoring. Metode rho anjak Pollard dan run time yang diharapkan. Faktoring melalui selisih kuadrat. Algoritma Fermat. Kuadrat Sieve, gambaran dari run time waktu running dari QS. Penyebutan singkat Nomor Lapangan Saringan dan kompleksitas dibandingkan dengan QS. Ulasan Singkat pertukaran DiffieHellman kunci, EIGamal kriptografi, dan masalah logaritma diskret di keadaan terbatas. Hubungan antara masalah El-Gamal, masalah Diffie-Hellman, DLP, dan masalah melanggar sistem ElGamal / DH. Ulasan langkah langkah besar algoritma DL. Metode rho Pollard dan gambaran run time yang diharapkan. Algoritma Pohlig-Hellman dan run time. Metode kalkulus indeks dan gambaran analisis run time.
Trial division. Power testing.Smooth numbers and review of Pollard p-1 factoring method. Pollard rho factoring method and its expected run time. Factoring via difference of squares. Fermat’s algorithm. The Quadratic Sieve, overview of the run time of the QS. Brief mention of the Number Field Sieve and its complexity in comparison to the QS. sis: Brief review of DiffieHellman key exchange, EIGamal cryptosystem, and the discrete logarithm problem in finite field. Relationship between the El-Gamal problem, the Diffie-Hellman problem, the DLP, and the problem of breaking the ElGamal/DH systems. Review of baby step giant step DL algorithm. Pollard rho method and overview of expected run time. Pohlig-Hellman algorithm and run time. Index calculus method and overview of run time analysis.
Steganalysis
Pengantar Steganografi dan Steganalysis, Teknologi Steganografi dan Steganalysis, Skema Steganografi dan Steganalysis.
Introduction to Steganography & Steganalysis, Technology of Steganography & Steganalysis, Steganography & Steganalysis Scheme.
7 Media Informatics Elective Courses : Image and Pattern Recognition Research Area
Image Processing
Sensing dan Representasi Gambar, Analisis gambar, Human Visual Persepsi, Image Enhancement, gambar Transform.
Image Sensing and Representation, Image Analysis, Human Visual Perception, Image Enhancement, Image Transform.
Information Visualization
Pengantar Visualisasi Informasi, Struktur Visualising Linear, Struktur Hierarki Visualising, Visualising Jaringan dan Struktur Graph, Visualising Multidimensional Data, Visualising Teks dan Object Collection, Spaces Visulising Query, Multidimensial visualisasi; Persepsi visual; Teknik Interaksi dasar; Pembahasan Augmented Reality.
Introduction to Information Visualization, Visualising Linear Structures, Visualising Hierarchies Structures, Visualising Network and Graph Structures, Visualising Multidimensional Data, Visualising Text and Object Collection, Visulising Query Spaces, Multidimensial visualization; visual perception; basic interaction technic; pembahasan Augmented Reality.
Multimedia Application, Content & Communication
Pembahasan tentang capacitiy planning, performance issue, karkateristik dan performansi setiap storage standar pada sistem berbasis multimedia. Selain itu juga akan dibahas tentang tools digital interactive media.
A discussion of capacity planning, performance issues, characteristics and performance of each storage standard on multimedia-based systems. It also will be discussed on interactive digital media tools.
Pattern Recognition
Konsep dasar pattern recognition, Bayesian Decision Theory, Parameter Estimation Method, HMM for sequential Pattern recognition, Dimension reduction method, non-parametric techniques for density estimation, linear descriminants function based classifier, non metric method for pattern classification.
The basic concept of pattern recognition, Bayesian Decision Theory, Parameter Estimation Method, HMM for sequential Pattern recognition, Dimension reduction methods, non-parametric techniques for density estimation, linear discriminant function Bayes classifier, non-metric method for pattern classification.
8 Media Informatics Elective Courses : Cloud Computing Research Area
Distributed System
Pembahasan routing basics sampai P2P system overview, Pendalamaan protokol2 midleware, aplikasi-aplikasi yang jalan dengan menggunakan konsep middleware.
A discussion of routing basics until P2P system overview, deepening midleware protocols, applications that run using the concept of middleware.
Mobile Computing
Pendalaman tentang performasi mobile computing dan multimedia computing.
Deepening of performance mobile computing and multimedia computing.
Internet Services and Application
The TCP/IP internet layering model, the protocol layering principle, boundaries in the TCP/IP model, UDP : the user datagram protocol, format of UDP message, UDP pseudo-header, UDP encapsulation and protocol layering, layring and the UDP checksum computaion, UDP multiplexing, demultiplexing, and ports, reliable stream transport service: properties of the reliable delivery service, transmission control protocol, response to congestion, establishing and closing TCP connection, Routing: Cores, peers and algorithms, an exterior gateway protocol. dibahas pembangunan dan pengelolaan layanan dan aplikasi berbasis Internet yang sesuai dengan rekomendasi dan standar organisasi penggiat Internet. Sejumlah e-systems (e-business, e-learning, e-auction, e-government dll.) akan ditinjau sebagai contoh kasus. Tren aplikasi dan sistem pendukung groupware (computer supported cooperative work) juga akan ditinjau dari sudut pandang konsep maupun implementasi sistemnya.
The TCP/IP internet layering model, the protocol layering principle, boundaries in the TCP/IP model, UDP : the user datagram protocol, format of UDP message, UDP pseudo-header, UDP encapsulation and protocol layering, layring and the UDP checksum computaion, UDP multiplexing, demultiplexing, and ports, reliable stream transport service: properties of the reliable delivery service, transmission control protocol, response to congestion, establishing and closing TCP connection, Routing: Cores, peers and algorithms, an exterior gateway protocol. Discuss the development and management of Internet-based services and applications are in accordance with the recommendations and standards of the Internet rights organizations. A number of e-systems (e-business, e-learning, e-auction, e-government etc.) Will be reviewed as an example. Trends applications and groupware support systems (computer supported cooperative work) will also be reviewed from the viewpoint of the concept and implementation of the system.
Network Management
Membahas hal-hal yang berkaitan dengan pengelolaan jaringan, seperti prosedur baku pengelolaan jaringan, beberapa best-practice yang telah terbukti andal, berikut platform dan perangkat untuk melakukan pengelolaan jaringan. Pengertian Network Quality of Service, cara pengukuran unjuk kerja, analisis terhadap data kinerja (pada jaringan sesungguhnya ataupun menggunakan simulator), dan perencanaan kapasitas juga akan dibahas,
Discuss issues related to the management of the network, such as network management standard procedure, some best-practices that have proven reliable, the following platforms and devices to perform network management. Definition of Network Quality of Service, way of measuring the performance, analysis of performance data (on a real network or using a simulator), and capacity planning will be discussed.